English

Prove that the following pair of statement patterns is equivalent. p ↔ q and (p → q) ∧ (q → p) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)

Sum

Solution

1 2 3 4 5 6
p q p↔q p→q q→p (p→q)∧(q→p)
T T T T T T
T F F F T F
F T F T F F
F F T T T T

In the above table, entries in columns 3 and 6 are identical.

∴ Statement p ↔ q and (p → q) ∧ (q → p) are equivalent.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.6 [Page 16]

APPEARS IN

RELATED QUESTIONS

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


If p is any statement then (p ∨ ∼p) is a ______.


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


With proper justification, state the negation of the following.

(p → q) ∧ r


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


The contrapositive of p → ~ q is ______


Which of the following is not equivalent to p → q.


The equivalent form of the statement ~(p → ~ q) is ______.


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×