English

Prove that the following statement pattern is a tautology. (p ∧ q) → q - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that the following statement pattern is a tautology.

(p ∧ q) → q

Sum

Solution

p q p ∧ q (p∧q)→q
T T T T
T F F T
F T F T
F F F T

All the truth values in the last column are T. Hence, it is tautology.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.6 [Page 16]

APPEARS IN

RELATED QUESTIONS

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

Some continuous functions are differentiable.


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


If p → (∼p v q) is false, then the truth values of p and q are respectively


Which of the following is not true for any two statements p and q?


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×