Advertisements
Advertisements
Question
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
Solution
Let p : 2 + 5 = 10
q : 4 + 10 = 20
∴ The given statement is p → q.
Its converse is q → p.
If 4 + 10 = 20, then 2 + 5 = 10
Its inverse is ~p → ~q.
If 2 + 5 ≠ 10 then 4 + 10 ≠ 20.
Its contrapositive is ~q → ~p.
If 4 + 10 ≠ 20 then 2 + 5 ≠ 10.
APPEARS IN
RELATED QUESTIONS
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p ∧ q) (p → r)
Using the truth table prove the following logical equivalence.
[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the negation of the following statement.
All the stars are shining if it is night.
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
The false statement in the following is ______.
Write the dual of the following.
13 is prime number and India is a democratic country
Which of the following is not equivalent to p → q.
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)