English

Using the truth table, prove the following logical equivalence. ~p ∧ q ≡ [(p ∨ q)] ∧ ~p - Mathematics and Statistics

Advertisements
Advertisements

Question

Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p

Sum

Solution

1 2 3 4 5 6
p q ~p ~p∧q (p∨q) (p∨q)∧~p
T T F F T F
T F F F T F
F T T T T T
F F T F F F

In the above truth table, the entries in columns 4 and 6 are identical.

∴ ~p ∧ q ≡ [(p ∨ q)] ∧ ~p

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Miscellaneous Exercise 1 [Page 33]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.14 | Page 33

RELATED QUESTIONS

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×