English

Prove that the following statement pattern is a contradiction. (p ∨ q) ∧ (~p ∧ ~q) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)

Sum

Solution

p q ~p ~q p∨q ~p∧~q (p∨q)∧(~p∧~q)
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T F

All the truth values in the last column are F. Hence, it is a contradiction.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.6 [Page 16]

APPEARS IN

RELATED QUESTIONS

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Write the dual of the following statements: (p ∨ q) ∧ T


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Prepare truth tables for the following statement pattern.

(~ p ∨ q) ∧ (~ p ∨ ~ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Write the dual of the following:

(p ∨ q) ∨ r


Write the dual of the following:

~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


The false statement in the following is ______.


Which of the following is not true for any two statements p and q?


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×