Advertisements
Advertisements
Question
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Solution
p | q | r | p→q | p→r | (p→q)∧(p→r) |
T | T | T | T | T | T |
T | T | F | T | F | F |
T | F | T | F | T | F |
T | F | F | F | F | F |
F | T | T | T | T | T |
F | T | F | T | T | T |
F | F | T | T | T | T |
F | F | F | T | T | T |
The truth values in the last column are not identical. Hence, it is contingency.
APPEARS IN
RELATED QUESTIONS
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Write the dual of the following:
~(p ∧ q) ≡ ~ p ∨ ~ q
Write the dual statement of the following compound statement.
Radha and Sushmita cannot read Urdu.
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Using the rules of negation, write the negation of the following:
(~p ∧ q) ∧ (~q ∨ ~r)
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Complete the truth table.
p | q | r | q → r | r → p | (q → r) ˅ (r → p) |
T | T | T | T | `square` | T |
T | T | F | F | `square` | `square` |
T | F | T | T | `square` | T |
T | F | F | T | `square` | `square` |
F | T | T | `square` | F | T |
F | T | F | `square` | T | `square` |
F | F | T | `square` | F | T |
F | F | F | `square` | T | `square` |
The given statement pattern is a `square`
The equivalent form of the statement ~(p → ~ q) is ______.
Which of the following is not true for any two statements p and q?
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].