Advertisements
Advertisements
Question
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Solution
(p ∧ r) → (p ∨ ~ q)
p | q | r | ~q | p ∧ r | p∨~q | (p ∧ r) → (p ∨ ~ q) |
T | T | T | F | T | T | T |
T | T | F | F | F | T | T |
T | F | T | T | T | T | T |
T | F | F | T | F | T | T |
F | T | T | F | F | F | T |
F | T | F | F | F | F | T |
F | F | T | T | F | T | T |
F | F | F | T | F | T | T |
APPEARS IN
RELATED QUESTIONS
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`
Write the dual of the following statements: (p ∨ q) ∧ T
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
If p is any statement then (p ∨ ∼p) is a ______.
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Write the dual of the following:
(p ∨ q) ∨ r
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∧ r) → (p ∨ ~q)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
The false statement in the following is ______.
The contrapositive of p → ~ q is ______
Write the dual of the following.
13 is prime number and India is a democratic country
The equivalent form of the statement ~(p → ~ q) is ______.
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].