English

Prepare truth tables for the following statement pattern. (p ∧ r) → (p ∨ ~ q) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)

Sum

Solution

(p ∧ r) → (p ∨ ~ q)

p q r ~q p ∧ r p∨~q (p ∧ r) → (p ∨ ~ q)
T T T F T T T
T T F F F T T
T F T T T T T
T F F T F T T
F T T F F F T
F T F F F F T
F F T T F T T
F F F T F T T
shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.6 [Page 16]

APPEARS IN

RELATED QUESTIONS

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`


Write the dual of the following statements: (p ∨ q) ∧ T


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

(p → q) ∧ (p ∧ ∼q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


If p is any statement then (p ∨ ∼p) is a ______.


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Write the dual of the following:

(p ∨ q) ∨ r


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


With proper justification, state the negation of the following.

(p → q) ∧ r


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


The false statement in the following is ______.


The contrapositive of p → ~ q is ______


Write the dual of the following.

13 is prime number and India is a democratic country


The equivalent form of the statement ~(p → ~ q) is ______.


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×