हिंदी

Prepare truth tables for the following statement pattern. (p ∧ r) → (p ∨ ~ q) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)

योग

उत्तर

(p ∧ r) → (p ∨ ~ q)

p q r ~q p ∧ r p∨~q (p ∧ r) → (p ∨ ~ q)
T T T F T T T
T T F F F T T
T F T T T T T
T F F T F T T
F T T F F F T
F T F F F F T
F F T T F T T
F F F T F T T
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Exercise 1.6 [पृष्ठ १६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Exercise 1.6 | Q 1.3 | पृष्ठ १६

संबंधित प्रश्न

Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


(p ∧ q) → r is logically equivalent to ________.


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


If p → (∼p v q) is false, then the truth values of p and q are respectively


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×