Advertisements
Advertisements
प्रश्न
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∧ (p → q)] → q
उत्तर
p | q | p → q | p ∧ (p → q) | [p ∧ (p → q)] → q |
T | T | T | T | T |
T | F | F | F | T |
F | T | T | F | T |
F | F | T | F | T |
All the entries in the last column of the above truth table are T.
∴ [(p ∧ (p → q)] → q is a tautology.
APPEARS IN
संबंधित प्रश्न
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table prove the following logical equivalence.
[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth table for (p ˄ q) ˅ ~ r
(p ∧ q) ∨ ~ r
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a tautology.
(~p ∧ ~q ) → (p → q)
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
If p is any statement then (p ∨ ∼p) is a ______.
Fill in the blanks :
Inverse of statement pattern p ↔ q is given by –––––––––.
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the dual statement of the following compound statement.
A number is a real number and the square of the number is non-negative.
Write the negation of the following statement.
Some continuous functions are differentiable.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
Construct the truth table for the following statement pattern.
(~p ∨ q) ∧ (~p ∧ ~q)
Construct the truth table for the following statement pattern.
(p ∨ r) → ~(q ∧ r)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
The false statement in the following is ______.
Write the converse and contrapositive of the following statements.
“If a function is differentiable then it is continuous”
Write the dual of the following.
13 is prime number and India is a democratic country
The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______.
The equivalent form of the statement ~(p → ~ q) is ______.
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
The converse of contrapositive of ∼p → q is ______.
In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].