Advertisements
Advertisements
प्रश्न
Write the dual statement of the following compound statement.
A number is a real number and the square of the number is non-negative.
उत्तर
A number is a real number or the square of the number is non-negative.
APPEARS IN
संबंधित प्रश्न
Write the dual of the following statements: (p ∨ q) ∧ T
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Construct the truth table for the following statement pattern.
(p ∧ r) → (p ∨ ~q)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Using the truth table, prove the following logical equivalence.
p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
The contrapositive of p → ~ q is ______
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
Complete the truth table.
p | q | r | q → r | r → p | (q → r) ˅ (r → p) |
T | T | T | T | `square` | T |
T | T | F | F | `square` | `square` |
T | F | T | T | `square` | T |
T | F | F | T | `square` | `square` |
F | T | T | `square` | F | T |
F | T | F | `square` | T | `square` |
F | F | T | `square` | F | T |
F | F | F | `square` | T | `square` |
The given statement pattern is a `square`
Which of the following is not true for any two statements p and q?
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______