हिंदी

State the Following Sentence is Statement. in Case of Statement, Write Down the Truth Value : √ -4 is a Rational Number. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.

योग

उत्तर

It is a statement
Its truth value is 'F'.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

संबंधित प्रश्न

Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the dual statement of the following compound statement.

Radha and Sushmita cannot read Urdu.


Write the negation of the following statement.

All the stars are shining if it is night.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Using the rules of negation, write the negation of the following:

(~p ∧ q) ∧ (~q ∨ ~r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


The contrapositive of p → ~ q is ______


Examine whether the statement pattern

[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×