Advertisements
Advertisements
प्रश्न
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
उत्तर
1 | 2 | 3 | 4 | 5 | 6 | 7 |
p | q | ~p | (p∨q) | ~(p∨q) | ~p∧q | ~(p∨q)∨(~p∧q) |
T | T | F | T | F | F | F |
T | F | F | T | F | F | F |
F | T | T | T | F | T | T |
F | F | T | F | T | F | T |
In the above truth table, the entries in columns 3 and 7 are identical.
∴ ~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
APPEARS IN
संबंधित प्रश्न
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table prove the following logical equivalence.
[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
If p is any statement then (p ∨ ∼p) is a ______.
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Construct the truth table for the following statement pattern.
(p ∨ r) → ~(q ∧ r)
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following.
13 is prime number and India is a democratic country
Which of the following is not equivalent to p → q.
The equivalent form of the statement ~(p → ~ q) is ______.
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
The converse of contrapositive of ∼p → q is ______.