Advertisements
Advertisements
प्रश्न
Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10
उत्तर
∃ x ∈ N such that 5x - 3 < 10
It is a true statement, for x = 1, 2 , ∈ N satisfy
5x - 3 < 10
APPEARS IN
संबंधित प्रश्न
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p ∧ q) (p → r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∧ (p → q)] → q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
If p is any statement then (p ∨ ∼p) is a ______.
Show that the following statement pattern is contingency.
(p∧~q) → (~p∧~q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the dual statement of the following compound statement.
A number is a real number and the square of the number is non-negative.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
Construct the truth table for the following statement pattern.
(~p ∨ q) ∧ (~p ∧ ~q)
Construct the truth table for the following statement pattern.
(p ∨ r) → ~(q ∧ r)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
Write the dual of the following.
13 is prime number and India is a democratic country
If p → (∼p v q) is false, then the truth values of p and q are respectively
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
The converse of contrapositive of ∼p → q is ______.
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)