हिंदी

Show that the following statement pattern is contingency. p ∧ [(p → ~ q) → q] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]

योग

उत्तर

p q ~q p→~q (p→~q)→q p∧[(p→~q)→q]
T T F F T T
T F T T F F
F T F T T F
F F T T F F

Truth values in the last column are not identical. Hence, it is contingency.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Exercise 1.6 [पृष्ठ १६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Exercise 1.6 | Q 5.3 | पृष्ठ १६

संबंधित प्रश्न

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Write the dual of the following statements: (p ∨ q) ∧ T


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth tables for the following statement pattern.

(~ p ∨ q) ∧ (~ p ∨ ~ q)


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


If p is any statement then (p ∨ ∼p) is a ______.


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∨ r) → ~(q ∧ r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


The contrapositive of p → ~ q is ______


Examine whether the statement pattern

[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.


The equivalent form of the statement ~(p → ~ q) is ______.


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×