हिंदी

Write the converse and contrapositive of the statement — “If two triangles are congruent, then their areas are equal.” - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”

योग

उत्तर

The given statement -
"If two triangles are congruent, then their areas are equal."

  • Converse of the above statement :
    If the areas of the two triangles are equal, then the triangles are congruent.
  • Contrapositive of the given statement :
    If the areas of two traingles are not equal then the triangles are not congruent.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Write the dual of the following statements: (p ∨ q) ∧ T


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


(p ∧ q) → r is logically equivalent to ________.


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Using the truth table, verify

~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Write the dual of the following:

(p ∨ q) ∨ r


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Write the negation of the following statement.

All the stars are shining if it is night.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Construct the truth table for the following statement pattern.

(p ∨ r) → ~(q ∧ r)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


Which of the following is not equivalent to p → q.


Which of the following is not true for any two statements p and q?


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


The converse of contrapositive of ∼p → q is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×