Advertisements
Advertisements
प्रश्न
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
उत्तर
Let p : 2 + 5 = 10
q : 4 + 10 = 20
∴ The given statement is p → q.
Its converse is q → p.
If 4 + 10 = 20, then 2 + 5 = 10
Its inverse is ~p → ~q.
If 2 + 5 ≠ 10 then 4 + 10 ≠ 20.
Its contrapositive is ~q → ~p.
If 4 + 10 ≠ 20 then 2 + 5 ≠ 10.
APPEARS IN
संबंधित प्रश्न
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table prove the following logical equivalence.
[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p → q) ∨ (q → p)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a tautology.
(~p ∧ ~q ) → (p → q)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the dual statement of the following compound statement.
A number is a real number and the square of the number is non-negative.
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
State the dual of the following statement by applying the principle of duality.
p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
If p → (∼p v q) is false, then the truth values of p and q are respectively
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].