हिंदी

Determine whether the following statement pattern is a tautology, contradiction or contingency: (p → q) ∨ (q → p) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)

योग

उत्तर

p q p → q q → p (p → q) ∨ (q → p)
T T T T T
T F F T T
F T T F T
F F T T T

All the entries in the last column of the above truth table are T.
∴ (p → q) ∨ (q → p) is a tautology.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Miscellaneous Exercise 1 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 7.8 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Write the dual of the following statements: (p ∨ q) ∧ T


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


(p ∧ q) → r is logically equivalent to ________.


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual statement of the following compound statement.

Radha and Sushmita cannot read Urdu.


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p → q) ∧ r


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


The false statement in the following is ______.


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


If p → (∼p v q) is false, then the truth values of p and q are respectively


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Which of the following is not equivalent to p → q.


The equivalent form of the statement ~(p → ~ q) is ______.


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×