Advertisements
Advertisements
प्रश्न
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
उत्तर
p | q | r | ~q | p∨~q | r∧p | (p∨~q)→(r∧p) |
T | T | T | F | T | T | T |
T | T | F | F | T | F | F |
T | F | T | T | T | T | T |
T | F | F | T | T | F | F |
F | T | T | F | F | F | T |
F | T | F | F | F | F | T |
F | F | T | T | T | F | F |
F | F | F | T | T | F | F |
APPEARS IN
संबंधित प्रश्न
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
(p ∧ q) → r is logically equivalent to ________.
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Fill in the blanks :
Inverse of statement pattern p ↔ q is given by –––––––––.
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
With proper justification, state the negation of the following.
(p → q) ∨ (p → r)
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Construct the truth table for the following statement pattern.
(p ∨ r) → ~(q ∧ r)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
The false statement in the following is ______.
Write the dual of the following.
13 is prime number and India is a democratic country
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.