हिंदी

If P : It is Raining Q : It is Humid Write the Following Statements in Symbolic Form: (A) It is Raining Or Humid. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 

योग

उत्तर

Let p : It is raining

      q : It is humid

(a) p ∨ q

(b) p → q

(c) p ∧ ∼q

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (July) Set 1

APPEARS IN

संबंधित प्रश्न

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Write the dual of the following statements: (p ∨ q) ∧ T


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual of the following:

~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

(~p ∧ q) ∧ (~q ∨ ~r)


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


The false statement in the following is ______.


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×