हिंदी

Using the truth table, prove the following logical equivalence. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

योग

उत्तर

1 2 3 4 5 6 7 8
p q r q∨r p∧(q∨r) p∧q p∧r (p∧q)∨(p∧r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

In the above truth table, the entries in columns 5 and 8 are identical.

∴ p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Miscellaneous Exercise 1 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.14 | पृष्ठ ३३

संबंधित प्रश्न

Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

(p → q) ∧ (p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


If p is any statement then (p ∨ ∼p) is a ______.


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the dual statement of the following compound statement.

Karina is very good or everybody likes her.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Write the dual of the following.

13 is prime number and India is a democratic country


The converse of contrapositive of ∼p → q is ______.


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×