Advertisements
Advertisements
प्रश्न
Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`
उत्तर
`p` |
`q` |
`~q` |
`p^^~q` |
`p->q` |
`(p^^~q)harr(p->q)` |
T | T | F | F | T | F |
T | F | T | T | F | F |
F | T | F | F | T | F |
F | F | T | F | T | F |
All the entries in the last column of the above truth table are F.
`(p^^~q) harr (p->q)` is is a contradiction
APPEARS IN
संबंधित प्रश्न
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p ∧ q) (p → r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p → q) ∨ (q → p)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth table for (p ˄ q) ˅ ~ r
(p ∧ q) ∨ ~ r
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a tautology.
(~p ∧ ~q ) → (p → q)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Prove that the following pair of statement pattern is equivalent.
p ↔ q and (p → q) ∧ (q → p)
Write the dual of the following:
~(p ∧ q) ≡ ~ p ∨ ~ q
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the negation of the following statement.
All the stars are shining if it is night.
Write the negation of the following statement.
Some continuous functions are differentiable.
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
With proper justification, state the negation of the following.
(p → q) ∨ (p → r)
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(~p ∨ q) ∧ (~p ∧ ~q)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
State the dual of the following statement by applying the principle of duality.
p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following.
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
Which of the following is not equivalent to p → q.
The equivalent form of the statement ~(p → ~ q) is ______.
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].