हिंदी

Prove that the following statement pattern is a tautology. (~ p ∨ ~ q) ↔ ~ (p ∧ q) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)

योग

उत्तर

p q ~p ~q ~p∨~q p∧q ~p∨~q (~p∨~q↔~(p ∧ q)
T T F F F T F T
T F F T T F T T
F T T F T F T T
F F T T T F T T

All the truth values in the last column are T. Hence, it is a tautology.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Exercise 1.6 [पृष्ठ १६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Exercise 1.6 | Q 3.4 | पृष्ठ १६

संबंधित प्रश्न

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧  ∼ r ) ∧ ( ∼ q ∧ s )


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


(p ∧ q) → r is logically equivalent to ________.


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a contradiction.

(p ∨ q) ∧ (~p ∧ ~q)


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Write the negation of the following statement.

All the stars are shining if it is night.


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


The contrapositive of p → ~ q is ______


Which of the following is not equivalent to p → q.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×