Advertisements
Advertisements
प्रश्न
Using the truth table, prove the following logical equivalence.
p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
उत्तर
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
p | q | ~p | ~q | p↔q | p∧~q | ~(p∧~q) | (q∧~p) | ~(q∧~p) | ~(p∧~q)∧~(q ∧ ~p) |
T | T | F | F | T | F | T | F | T | T |
T | F | F | T | F | T | F | F | T | F |
F | T | T | F | F | F | T | T | F | F |
F | F | T | T | T | F | T | F | T | T |
In the above truth table, the entries in columns 5 and 10 are identical.
∴ p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
संबंधित प्रश्न
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]
Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p ∧ q) (p → r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∧ (p → q)] → q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p → q) ∨ (q → p)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Prepare truth table for (p ˄ q) ˅ ~ r
(p ∧ q) ∨ ~ r
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Show that the following statement pattern is contingency.
(p∧~q) → (~p∧~q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Prove that the following pair of statement pattern is equivalent.
p ↔ q and (p → q) ∧ (q → p)
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the negation of the following statement.
All the stars are shining if it is night.
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
With proper justification, state the negation of the following.
(p → q) ∨ (p → r)
Construct the truth table for the following statement pattern.
(p ∧ r) → (p ∨ ~q)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
State the dual of the following statement by applying the principle of duality.
p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]
Write the converse and contrapositive of the following statements.
“If a function is differentiable then it is continuous”
Write the dual of the following
(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)
If p → (∼p v q) is false, then the truth values of p and q are respectively
The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______.
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
The converse of contrapositive of ∼p → q is ______.
In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].