Advertisements
Advertisements
प्रश्न
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
उत्तर
~ [(p → r) ∧ q] ≡ ~(p → r) ∨ ~q ....[Negation of conjunction]
≡ (p ∧ ~ r) ∨ ~q .....[Negation of implication]
APPEARS IN
संबंधित प्रश्न
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p ∧ q) (p → r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(p ∨ q) ∧ ∼p] ∧ ∼q
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
If p is any statement then (p ∨ ∼p) is a ______.
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual of the following:
(p ∨ q) ∨ r
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
The contrapositive of p → ~ q is ______
If p → (∼p v q) is false, then the truth values of p and q are respectively
Which of the following is not true for any two statements p and q?
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
The converse of contrapositive of ∼p → q is ______.
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.