Advertisements
Advertisements
Question
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Solution
~ [(p → r) ∧ q] ≡ ~(p → r) ∨ ~q ....[Negation of conjunction]
≡ (p ∧ ~ r) ∨ ~q .....[Negation of implication]
APPEARS IN
RELATED QUESTIONS
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
If p is any statement then (p ∨ ∼p) is a ______.
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Using the rules of negation, write the negation of the following:
(~p ∧ q) ∧ (~q ∨ ~r)
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
State the dual of the following statement by applying the principle of duality.
p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
Write the converse and contrapositive of the following statements.
“If a function is differentiable then it is continuous”
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
Complete the truth table.
p | q | r | q → r | r → p | (q → r) ˅ (r → p) |
T | T | T | T | `square` | T |
T | T | F | F | `square` | `square` |
T | F | T | T | `square` | T |
T | F | F | T | `square` | `square` |
F | T | T | `square` | F | T |
F | T | F | `square` | T | `square` |
F | F | T | `square` | F | T |
F | F | F | `square` | T | `square` |
The given statement pattern is a `square`
The converse of contrapositive of ∼p → q is ______.