Advertisements
Advertisements
Question
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Solution
p | q | ~q | p∧~q | q→p | (p∧~q)↔(q→p) |
T | T | F | F | T | F |
T | F | T | T | T | T |
F | T | F | F | F | T |
F | F | T | F | T | F |
RELATED QUESTIONS
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10
Write the negation of the Following Statement :
∀ y ∈ N, y2 + 3 ≤ 7
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p → q) ∨ (q → p)
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Using the rules of negation, write the negation of the following:
(~p ∧ q) ∧ (~q ∨ ~r)
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
With proper justification, state the negation of the following.
(p → q) ∧ r
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Write the converse and contrapositive of the following statements.
“If a function is differentiable then it is continuous”
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
Choose the correct alternative:
If p → q is an implication, then the implication ~q → ~p is called its
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
If p → (∼p v q) is false, then the truth values of p and q are respectively
Which of the following is not equivalent to p → q.
Which of the following is not true for any two statements p and q?
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].