English

Examine whether the following statement pattern is a tautology, a contradiction or a contingency. (~ q ∧ p) ∧ (p ∧ ~ p) - Mathematics and Statistics

Advertisements
Advertisements

Question

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)

Sum

Solution

p q ~p ~q (~q∧p) (p∧~p) (~q∧p)∧(p∧~p)
T T F F F F F
T F F T T F F
F T T F F F F
F F T T F F F

All the truth values in the last column are F. Hence, it is a contradiction.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Mathematical Logic - Exercise 1.6 [Page 16]

APPEARS IN

RELATED QUESTIONS

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Using the truth table, verify

~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual of the following:

(p ∨ q) ∨ r


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Which of the following is not equivalent to p → q.


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency:

(∼p ∧ ∼q) → (p → q)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×