मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Examine whether the following statement pattern is a tautology, a contradiction or a contingency. (~ q ∧ p) ∧ (p ∧ ~ p) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)

बेरीज

उत्तर

p q ~p ~q (~q∧p) (p∧~p) (~q∧p)∧(p∧~p)
T T F F F F F
T F F T T F F
F T T F F F F
F F T T F F F

All the truth values in the last column are F. Hence, it is a contradiction.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Mathematical Logic - Exercise 1.6 [पृष्ठ १६]

APPEARS IN

संबंधित प्रश्‍न

Write the dual of the following statements: (p ∨ q) ∧ T


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


(p ∧ q) → r is logically equivalent to ________.


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

(p → q) ∧ (p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth tables for the following statement pattern.

(~ p ∨ q) ∧ (~ p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual statement of the following compound statement.

Karina is very good or everybody likes her.


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×