Advertisements
Advertisements
प्रश्न
Construct the truth table for the following statement pattern.
(p ∧ r) → (p ∨ ~q)
उत्तर
p | q | r | ~q | p∧r | p∨~q | (p∧r)→(p∨~q) |
T | T | T | F | T | T | T |
T | T | F | F | F | T | T |
T | F | T | T | T | T | T |
T | F | F | T | F | T | T |
F | T | T | F | F | F | T |
F | T | F | F | F | F | T |
F | F | T | T | F | T | T |
F | F | F | T | F | T | T |
APPEARS IN
संबंधित प्रश्न
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
Write the dual of the following statements: (p ∨ q) ∧ T
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table prove the following logical equivalence.
[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Fill in the blanks :
Inverse of statement pattern p ↔ q is given by –––––––––.
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
~(p ∧ q) ≡ ~ p ∨ ~ q
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Write the dual of the following.
13 is prime number and India is a democratic country
The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______.
Which of the following is not true for any two statements p and q?
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.