मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Construct the truth table for the following statement pattern. (p ∧ r) → (p ∨ ~q) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)

बेरीज

उत्तर

p q r ~q p∧r p∨~q (p∧r)→(p∨~q)
T T T F T T T
T T F F F T T
T F T T T T T
T F F T F T T
F T T F F F T
F T F F F F T
F F T T F T T
F F F T F T T
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Mathematical Logic - Miscellaneous Exercise 1 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.11 | पृष्ठ ३३

संबंधित प्रश्‍न

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Write the dual of the following statements: (p ∨ q) ∧ T


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Using the truth table, verify

~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Write the dual of the following.

13 is prime number and India is a democratic country


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Which of the following is not true for any two statements p and q?


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×