Advertisements
Advertisements
प्रश्न
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
उत्तर
Truth table given is as follows:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
p | q | r |
`A=p vv q` |
`B=p->r` |
`C=q->r` |
`A->r` |
`B ^^ C` |
T | T | T | T | T | T | T | T |
T | T | F | T | F | F | F | F |
T | F | T | T | T | T | T | T |
T | F | F | T | F | T | F | F |
F | T | T | T | T | T | T | T |
F | T | F | T | T | F | F | F |
F | F | T | F | T | T | T | T |
F | F | F | F | T | T | T | T |
In the above truth table all the entries in the columns of
(p ∨ q) → r and (p → r) ∧ (q → r) are identical.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
APPEARS IN
संबंधित प्रश्न
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
If p is any statement then (p ∨ ∼p) is a ______.
Show that the following statement pattern is contingency.
(p∧~q) → (~p∧~q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Prove that the following pair of statement pattern is equivalent.
p ↔ q and (p → q) ∧ (q → p)
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Write the negation of the following statement.
Some continuous functions are differentiable.
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Write the converse, inverse, and contrapositive of the following statement.
"If it snows, then they do not drive the car"
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
Using the truth table, prove the following logical equivalence.
p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
Choose the correct alternative:
If p → q is an implication, then the implication ~q → ~p is called its
Which of the following is not true for any two statements p and q?
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
The converse of contrapositive of ∼p → q is ______.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].