Advertisements
Advertisements
प्रश्न
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
उत्तर
(p ∨ ~q) ∧ (~ p ∨ q) ≡ (p ∧ q) ∨ ~(p ∨ q)
APPEARS IN
संबंधित प्रश्न
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`
Write the dual of the following statements: (p ∨ q) ∧ T
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10
Write the negation of the following statement :
If the lines are parallel then their slopes are equal.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(p ∨ q) ∧ ∼p] ∧ ∼q
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a tautology.
(~p ∧ ~q ) → (p → q)
If p is any statement then (p ∨ ∼p) is a ______.
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Choose the correct alternative:
If p → q is an implication, then the implication ~q → ~p is called its
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
Complete the truth table.
p | q | r | q → r | r → p | (q → r) ˅ (r → p) |
T | T | T | T | `square` | T |
T | T | F | F | `square` | `square` |
T | F | T | T | `square` | T |
T | F | F | T | `square` | `square` |
F | T | T | `square` | F | T |
F | T | F | `square` | T | `square` |
F | F | T | `square` | F | T |
F | F | F | `square` | T | `square` |
The given statement pattern is a `square`
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q