Advertisements
Advertisements
प्रश्न
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
उत्तर
Let p:4 is an odd number
q:6 is divisible by 3
Thus symbolic form of the given statement is p → q
Clearly truth values of p is F and q is T.
Truth value of p → q is F → T ≡ T
APPEARS IN
संबंधित प्रश्न
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Write the negation of the Following Statement :
∀ y ∈ N, y2 + 3 ≤ 7
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
If p is any statement then (p ∨ ∼p) is a ______.
Show that the following statement pattern is contingency.
(p∧~q) → (~p∧~q)
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the negation of the following statement.
Some continuous functions are differentiable.
With proper justification, state the negation of the following.
(p → q) ∧ r
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Write the dual of the following.
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
The contrapositive of p → ~ q is ______
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].