Advertisements
Advertisements
प्रश्न
The contrapositive of p → ~ q is ______
उत्तर
The contrapositive of p → ~ q is q → ~ p
APPEARS IN
संबंधित प्रश्न
Write the dual of the following statements: (p ∨ q) ∧ T
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Using the truth table prove the following logical equivalence.
p → (q ∧ r) ≡ (p → q) ∧ (p → r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(p ∨ q) ∧ ∼p] ∧ ∼q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p → q) ∨ (q → p)
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Prepare truth table for (p ˄ q) ˅ ~ r
(p ∧ q) ∨ ~ r
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
Prove that the following pair of statement pattern is equivalent.
p ↔ q and (p → q) ∧ (q → p)
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
~(p ∧ q) ≡ ~ p ∨ ~ q
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Using the rules of negation, write the negation of the following:
(p → r) ∧ q
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Using the truth table, prove the following logical equivalence.
p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
The false statement in the following is ______.
Which of the following is not equivalent to p → q.
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)