Advertisements
Advertisements
प्रश्न
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ ~p
उत्तर
p | q | ~p | p∧q | (p∧q)∧~p |
T | T | F | T | F |
T | F | F | F | F |
F | T | T | F | F |
F | F | T | F | F |
All the truth values in the last column are F. Hence, it is a contradiction.
APPEARS IN
संबंधित प्रश्न
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 "
Write the dual of the following statements: (p ∨ q) ∧ T
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
If p : It is raining
q : It is humid
Write the following statements in symbolic form:
(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r
Prepare truth tables for the following statement pattern.
p → (~ p ∨ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
Using the truth table, verify
p → (p → q) ≡ ~ q → (p → q)
Write the dual of the following:
~(p ∧ q) ≡ ~ p ∨ ~ q
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
With proper justification, state the negation of the following.
(p → q) ∨ (p → r)
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following.
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Write the converse and contrapositive of the following statements.
“If a function is differentiable then it is continuous”
Write the dual of the following
(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
If p → (∼p v q) is false, then the truth values of p and q are respectively
Which of the following is not equivalent to p → q.
Which of the following is not true for any two statements p and q?
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.