Advertisements
Advertisements
प्रश्न
Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )
उत्तर
(1) | (2) | (3) | (4) | (5) |
p | q | q → q | p → q | ( q → q ) v ( p → q ) |
T | T | T | T | T |
T | F | T | F | T |
F | T | F | T | T |
F | F | T | T | T |
The truth table contains only T in the last column.
Hence, the given statement is a tautology.
APPEARS IN
संबंधित प्रश्न
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Write the negation of the Following Statement :
∀ y ∈ N, y2 + 3 ≤ 7
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∧ (p → q)] → q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p → q) ∨ (q → p)
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth table for (p ˄ q) ˅ ~ r
(p ∧ q) ∨ ~ r
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
If p is any statement then (p ∨ ∼p) is a ______.
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the negation of the following statement.
Some continuous functions are differentiable.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Write the converse, inverse, and contrapositive of the following statement.
If he studies, then he will go to college.
Construct the truth table for the following statement pattern.
(~p ∨ q) ∧ (~p ∧ ~q)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following
(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)
The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______.
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].