Advertisements
Advertisements
प्रश्न
Evaluate
`int 1/(16 - 9x^2) dx`
उत्तर
I = `int 1/(16 - 9x^2) dx`
I = `int 1/(sqrt(16(1 - (9x^2)/16))) dx`
I = `int 1/(4 sqrt(1 - (3x/4)^2)) dx`
∴ t = `3x/4`
dt = `3/4` dx
`4/3 dt = dx`
I = `1/(cancel(4) sqrt(1 - t^2)) cancel(4)/3 dt`.
I = `1/3 int 1/sqrt(1 - t^2) dt`
∴ t = sin u
dt = cos u du
I = `1/3 int 1/sqrt(1 - sin^2 u) . cos u du`
I = `1/3 int 1/sqrt(cos^(2) u). cos u du`.........(sin2u + cos2u = 1. ∴cos2u = 1 - sin2u)
I = `1/3 int (cancel(cos u)/cancel(cos u)) du.`
I = `1/3 int 1 du`
I = `1/3 u`
I = `1/3 sin t` ......(∴ t = sin u u = sin t)
I = `1/3 sin ((3x)/4) + C .....(∴ t = 3x/4)`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
`log (x + sqrt(x^2 + "a"))`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If y = `9^(log_3x)`, find `dy/dx`.
Find the derivative of `y = log x + 1/x` with respect to x.