Advertisements
Advertisements
प्रश्न
Evaluate
`int 1/(16 - 9x^2) dx`
उत्तर
I = `int 1/(16 - 9x^2) dx`
I = `int 1/(sqrt(16(1 - (9x^2)/16))) dx`
I = `int 1/(4 sqrt(1 - (3x/4)^2)) dx`
∴ t = `3x/4`
dt = `3/4` dx
`4/3 dt = dx`
I = `1/(cancel(4) sqrt(1 - t^2)) cancel(4)/3 dt`.
I = `1/3 int 1/sqrt(1 - t^2) dt`
∴ t = sin u
dt = cos u du
I = `1/3 int 1/sqrt(1 - sin^2 u) . cos u du`
I = `1/3 int 1/sqrt(cos^(2) u). cos u du`.........(sin2u + cos2u = 1. ∴cos2u = 1 - sin2u)
I = `1/3 int (cancel(cos u)/cancel(cos u)) du.`
I = `1/3 int 1 du`
I = `1/3 u`
I = `1/3 sin t` ......(∴ t = sin u u = sin t)
I = `1/3 sin ((3x)/4) + C .....(∴ t = 3x/4)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Find the second order derivatives of the following : log(logx)
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.