Advertisements
Advertisements
प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
उत्तर
`Let y=(logx)^x+x^(logx).............(1)`
`Now `
`y=y_1+y_2 ..........................(2)`
Differentiating (2) with respect x, we get
`dy/dx=dy_1/dx+dy_2/dx.........(3)`
Now take log of y1 = (log x)x
`log y_1 = x log (log x)`
Differentiating with respect to x, we get
`1/y_2 dy_2/dx=(2logx) xx 1/x`
`dy_2/dx=y_2((2logx)/x)=x^(logx)((2logx)/x)................(5)`
Adding equation (4) and (5), we get:
`dy/dx=(logx)^x(1/logx+log(logx))+x^(logx)((2logx)/x)`
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Find the nth derivative of the following : log (2x + 3)
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
`8^x/x^8`
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`