हिंदी

Using properties of determinants prove the following: |[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2 - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`

उत्तर

The given determinant is `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|`

Applying the transformation c1c1 + c2 + c3, we get

`|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=|[1+x+x^2,x,x^2],[x^2+1+x,1,x],[x+x^2+1,x^2,1]|=(1+x+x^2)|[1,x,x^2],[1,1,x],[1,x^2,1]|`

Again applying the transformation R1R1R2 and R2R2R3, we get

`(1+x+x^2)|[1,x,x^2],[1,1,x],[1,x^2,1]|=(1+x+x^2)|[0,x-1,x^2-x],[0,1-x^2,x-1],[1,x^2,1]|=(1+x+x^2)(x-1)^2|[0,1,x],[0,-x-1,1],[1,x^2,1]|`

`=(x^3-1)(x-1){0-0+(1+x+x^2)}=(x^3-1)(x-1)(x^2+x+1)`

`=(x^3-1)(x^3-1)=(x^3-1)^2=(1-x^3)^2`

hence ` |[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (March) Delhi Set 1

संबंधित प्रश्न

Using properties of determinants, prove that

`|[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3`


Using the property of determinants and without expanding, prove that:

`|(2,7,65),(3,8,75),(5,9,86)| = 0`


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Using properties of determinants, prove that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`


Using properties of determinants show that

`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`


Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`


Using properties of determinant prove that 

`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc


Using properties of determinants, prove the following:

`|(a, b,c),(a-b, b-c, c-a),(b+c, c+a, a+b)| = a^3 + b^3 + c^3 - 3abc`.


Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.


Using properties of determinant show that

`|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` = 0


Without expanding determinants show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Select the correct option from the given alternatives:

If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then


Answer the following question:

If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1


Prove that: `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


Prove that: `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`


If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.


The determinant `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` equals ______.


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.


Let Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, then Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32.


Let P be any non-empty set containing p elements. Then, what is the number of relations on P?


The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are


If A, B and C are the angles of a triangle ABC, then `|(sin2"A", sin"C", sin"B"),(sin"C", sin2"B", sin"A"),(sin"B", sin"A", sin2"C")|` = ______.


If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).


Without expanding determinants find the value of  `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that

`|(x+ y,y+z, z+x ),(z, x,y),(1,1,1)|` = 0 


Without expanding evaluate the following determinant.

`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×