Advertisements
Advertisements
प्रश्न
Using properties of determinants, prove the following:
`|(a, b,c),(a-b, b-c, c-a),(b+c, c+a, a+b)| = a^3 + b^3 + c^3 - 3abc`.
उत्तर
Δ = `|(a, b,c),(a-b, b-c, c-a),(b+c, c+a, a+b)|`
= `|(a,b,c),(a-b, b-c, c-a),(a+b+c, c+a+b, a+b+c)| ...[ "Applying" R_3 -> R_3 + R_1]`
= `(a +b+c) |(a,b,c),(a-b, b-c, c-a),(1,1,1)| ...["Taking" (a +b +c) "common"]`
= `(a +b+c) |(a, b ,c),(-b , -c, -a),(1, 1, 1)| ...["Applying" R_2 -> R_2 - R_1]`
= `(a +b+c) |(a-c, b-c, c),(-b +a , -c+a, -a),(0, 0, 1)| ...[C_1 -> C_1 - C_3 "and" C_2 ->C_2 - C_3]`
= `(a +b+c) [{(a-c) (a-c) -(b-c)(a-b)}]`
= `(a +b+c) ...[{(a - c)^2 - (ab - ac - b^2 + bc)]`
= `(a +b+c) [(a -c ^2- (ab - ac - b^2 + bc)]`
= `(a +b+c) (a^2 + b^2 + c^2 - ab - bc - ca)`
= `a^3 + b^3 + c^3 - 3abc`
APPEARS IN
संबंधित प्रश्न
Using properties of determinants, prove that
`|[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3`
Using the property of determinants and without expanding, prove that:
`|(b+c, q+r, y+z),(c+a, r+p, z +x),(a+b, p+q, x + y )| = 2|(a,p,x),(b,q,y),(c, r,z)|`
By using properties of determinants, show that:
`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`
By using properties of determinants, show that:
`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`
By using properties of determinants, show that:
`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`
Without expanding the determinant, prove that
`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`
Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`
Using properties of determinants, prove that:
`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`
Using properties of determinants show that
`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`
Using properties of determinants, prove the following :
Using properties of determinants, prove that:
`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`
Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`
Find the value (s) of x, if `|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)|` = 0
By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.
Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`
Select the correct option from the given alternatives:
The value of a for which system of equation a3x + (a + 1)3 y + (a + 2)3z = 0 ax + (a +1)y + (a + 2)z = 0 and x + y + z = 0 has non zero Soln. is
Evaluate: `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
Prove that: `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`
If cos2θ = 0, then `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.
Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.
If A, B and C are the angles of a triangle ABC, then `|(sin2"A", sin"C", sin"B"),(sin"C", sin2"B", sin"A"),(sin"B", sin"A", sin2"C")|` = ______.
In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.
Without expanding evaluate the following determinant.
`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`
Without expanding determinants, find the value of `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`
By using properties of determinant prove that
`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`