हिंदी

Using Properties of Determinants, Prove That: `|(1+A^2-b^2, 2ab, -2b),(2ab, 1-a^2+B^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + A^2 + B^2)^3` - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants, prove that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`

उत्तर

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`

Let

`Delta = |(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)|`

We shall try to introduce zeros at a many places as possible keeping in mind that we have to introduce the factor `1 + a^2 +  b^2`

Applying `C_1 -> C_1 - bC_3` and `C_2 -> C_2 +  aC_3` we get

`Delta = |(1+a^2+b^2, 0, -2b),(0, 1+a^2+b^2, 2a), (b(1+a^2 +b^2), -a(1+a^2+b^2), 1-a^2 - b^2)|`

`=> Delta = (1 + a^2  +b^2)^2 |(1,0,-2b),(0,1,2a),(b, -a, -a^2-b^2)|`   [Taking `(1+ a^2 + b^2)` common from both `C_1 and C_2`]

`=> Delta = (1+ a^2 + b^2)^2 |(1,0,-2b),(0,1, 2a),(0,0, 1+z^2+b^2) |`       [Applying `R_3 -> R_3- bR_1 + aR_2`]

`=> Delta= (1 + a^2 + b^2)^2 xx 1 xx |(1, 2a),(0, 1+a^2 + b^2)|`       [Expanding along `C_1`]

`=> Delta= (1 + a^2 + b^2 )^3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

संबंधित प्रश्न

Using the property of determinants and without expanding, prove that:

`|(1, bc, a(b+c)),(1, ca, b(c+a)),(1, ab, c(a+b))| = 0`


By using properties of determinants, show that:

`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)


By using properties of determinants, show that:

`|(x+4,2x,2x),(2x,x+4,2x),(2x , 2x, x+4)| = (5x + 4)(4-x)^2`


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


By using properties of determinants, show that:

`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`


Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that 

`|(a^2 + 2a,2a + 1,1),(2a+1,a+2, 1),(3, 3, 1)| = (a - 1)^3`


Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants. 


Using properties of determinants, find the value of x for which
`|(4-"x",4+"x",4+"x"),(4+"x",4-"x",4+"x"),(4+"x",4+"x",4-"x")|= 0`


Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Without expanding determinant show that

`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


The value of `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` is 8.


Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


Prove that: `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.


If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to ______.


If x = – 9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0, then other two roots are ______.


If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.


`abs(("x", -7),("x", 5"x" + 1))`


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.


Let P be any non-empty set containing p elements. Then, what is the number of relations on P?


Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:


If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×