Advertisements
Advertisements
प्रश्न
Answer the following question:
Without expanding determinant show that
`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0
उत्तर
Let D = `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|`
By taking ( –1) common from each of R1, R2, R3, we get,
D = `(-1)^3|(0, -"a", -"b"),("a", 0, -"c"),("b", "c", 0)|`
By interchanging rows and columns, we get,
D = `(-1)|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|`
∴ D = – 1(D)
∴ 2D = 0
∴ D = 0
∴ `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0
APPEARS IN
संबंधित प्रश्न
Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`
Using properties of determinants, prove that
`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`
If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).
Using the property of determinants and without expanding, prove that:
`|(2,7,65),(3,8,75),(5,9,86)| = 0`
By using properties of determinants, show that:
`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`
Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`
Using properties of determinants, prove that:
`|(3a, -a+b, -a+c),(-b+a, 3b, -b+c),(-c+a, -c+b, 3c)|`= 3(a + b + c) (ab + bc + ca)
Using properties of determinants, prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy + yz+ zx)`
Using properties of determinants show that
`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`
Using properties of determinants, prove that
`|[b+c , a ,a ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc
Using properties of determinants, prove that:
`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`
Using properties of determinants, find the value of x for which
`|(4-"x",4+"x",4+"x"),(4+"x",4-"x",4+"x"),(4+"x",4+"x",4-"x")|= 0`
Using properties of determinants, show that `|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc.
Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0
Without expanding evaluate the following determinant:
`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`
Prove that `|(x + y, y + z, z + x),(z + x, x + y, y + z),(y + z, z + x, x + y)| = 2|(x, y, z),(z, x, y),(y, z, x)|`
Solve the following equation:
`|(x + 2, x + 6, x - 1),(x + 6, x - 1, x + 2),(x - 1, x + 2, x + 6)|` = 0
Select the correct option from the given alternatives:
Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then
Select the correct option from the given alternatives:
The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when
Answer the following question:
If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1
Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
Evaluate: `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.
If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.
Let Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, then Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32.
If `abs ((2"x",5),(8, "x")) = abs ((6,-2),(7,3)),` then the value of x is ____________.
Let P be any non-empty set containing p elements. Then, what is the number of relations on P?
If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is
A system of linear equations represented in matrix form Ax = 0, A is n × n matrix, has a non-zero solution if the determinant of A (i.e., det(A)) is
Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`
By using properties of determinant prove that `|(x + y, y+z, z +x),(z,x,y),(1,1,1)| =0`
By using properties of determinant prove that
`|(x+ y,y+z, z+x ),(z, x,y),(1,1,1)|` = 0
Evaluate the following determinant without expanding:
`|(5, 5, 5),(a, b, c),(b + c, c + a, a + b)|`
Without expanding determinants, find the value of `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`
By using properties of determinant prove that
`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`