हिंदी

If the determinant apulfybqvmgzcrwnh|x+ap+ul+fy+bq+vm+gz+cr+wn+h| splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8. - Mathematics

Advertisements
Advertisements

प्रश्न

If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

Let Δ = `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|`

Splitting up C1

⇒ `|(x, "p" + "u", "l" + "f"),(y, "q" + "v", "m" + "g"),(z, "r" + "w", "n" + "h")| + |("a", "p" + "u", "l" + "f"),("b", "q" + "v", "m" + "g"),("c", "r" + "w", "n" + "h")|`

Splitting up C2 in both determinants

⇒ `|(x, "p", "l" + "f"),(y, "q", "m" + "g"),(z, "r", "n" + "h")| + |(x, "u", "l" + "f"),(y, "v", "m" + "g"),(z, "w", "n" + "h")| + |("a", "p", "l" + "f"),("b", "q", "m" + "g"),("c", "r", "n" + "h")| + |("a", "u", "l" + "f"),("b", "v", "m" + "g"),("c", "w", "n" + "h")|`

Similarly by splitting C3 in each determinant, we will get 8 determinants.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise [पृष्ठ ८४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise | Q 56 | पृष्ठ ८४

संबंधित प्रश्न

Using the property of determinants and without expanding, prove that:

`|(a-b,b-c,c-a),(b-c,c-a,a-b),(a-a,a-b,b-c)| = 0`


By using properties of determinants, show that:

`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy +  yz+ zx)`


 Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Without expanding evaluate the following determinant:

`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`


Solve the following equation: 

`|(x + 2, x + 6, x - 1),(x + 6, x - 1, x + 2),(x - 1, x + 2, x + 6)|` = 0


If  `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


Select the correct option from the given alternatives:

The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when


Answer the following question:

Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties


Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


Prove that: `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`


If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.


Let Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, then Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32.


Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.


A system of linear equations represented in matrix form Ax = 0, A is n × n matrix, has a non-zero solution if the determinant of A (i.e., det(A)) is


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.


If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).


Without expanding evaluate the following determinant.

`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


By using properties of determinant prove that

`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`


Without expanding evaluate the following determinant.

`|(1,"a","b+c"),(1,"b","c+a"),(1,"c","a+b")|`


if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×