हिंदी

If A + B + C = 0, then prove that cBCABA|1cosccosBcosC1cosAcosBcosA1| = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0

योग

उत्तर

L.H.S. = `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|`

Expanding along C1

= `1|(1, cos"A"),(cos"A", 1)| - cos"C"|(cos"C", cos"B"),(cos"A", 1)| + cos"B"|(cos"C", cos"B"),(1, cos"A")|`

= 1(1 – cos2A) – cos C(cos C – cos A cos B) + cos B(cos A cos C – cos B)

= sin2A – cos2C + cos A cos B cos C + cos A cos B cos C – cos2B

= sin2A – cos2B – cos2C + 2 cos A cos B cos C

= – cos(A + B) · cos(A – B) – cos2C + 2 cos A cos B cos C  .....[∵ sin2A – cos2B = – cos(A + B) · cos(A – B)]

= – cos(– C) · cos(A – B) + cos C(2 cos A cos B – cos C)  .....[∵ A + B + C = 0]

= – cos C(cos A cos B + sin A sin B) + cos C(2 cos A cos B – cos C)

= – cos C(cos A cos B + sin A sin B – 2 cos A cos B + cos C)

= – cos C(– cos A cos B + sin A sin B + cos C)

= cos C(cos A cos B – sin A sin B – cos C)

= cos C[cos(A + B) – cos C]

= cos C[cos (– C) – cos C]  .....[∵ A + B = – C]

= cos C[cos C – cos C]

= cos C · 0

= 0 R.H.S.

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise | Q 10 | पृष्ठ ७८

संबंधित प्रश्न

Using properties of determinants, show that ΔABC is isosceles if:`|[1,1,1],[1+cosA,1+cosB,1+cosC],[cos^2A+cosA,cos^B+cosB,cos^2C+cosC]|=0​`


By using properties of determinants, show that:

`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`


By using properties of determinants, show that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1+a^2+b^2)`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Using properties of determinants, prove that:

`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.


Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.


Without expanding determinants, show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + |(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`


By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.


Without expanding determinants show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Without expanding determinant show that

`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


If a, b, c are the roots of the equation x3 - 3x2 + 3x + 7 = 0, then the value of `abs((2 "bc - a"^2, "c"^2, "b"^2),("c"^2, 2 "ac - b"^2, "a"^2),("b"^2, "a"^2, 2 "ab - c"^2))` is ____________.


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


In a third order matrix B, bij denotes the element in the ith row and jth column. If

bij = 0 for i = j

= 1 for > j

= – 1 for i < j

Then the matrix is


Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:


By using properties of determinant prove that `|(x + y, y+z, z +x),(z,x,y),(1,1,1)| =0`


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


Without expanding determinant find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×