हिंदी

Using Properties of Determinants, Prove the Following: ∣ ∣ ∣ ∣ ∣ X 2 + 1 X Y X Z X Y Y 2 + 1 Y Z X Z Y Z Z 2 + 1 ∣ ∣ ∣ ∣ ∣ = 1 + X 2 + Y 2 + Z 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

उत्तर

Let \[\bigtriangleup = \begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix}\]

Multiplying R1, R2 and R3 by xy and z, respectively, we get:

\[\bigtriangleup = \frac{1}{xyz}\begin{vmatrix}x\left( x^2 + 1 \right) & x^2 y & x^2 z \\ x y^2 & y\left( y^2 + 1 \right) & y^2 z \\ x z^2 & y z^2 & z\left( z^2 + 1 \right)\end{vmatrix}\]

Taking xy and z common from the columns C1, C2 and C3, respectively, we get:

\[\bigtriangleup = \frac{xyz}{xyz}\begin{vmatrix}\left( x^2 + 1 \right) & x^2 & x^2 \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]

Applying R1  \[\to\] + R2 + R3, we get: 

\[\bigtriangleup = \begin{vmatrix}\left( 1 + x^2 + y^2 + z^2 \right) & \left( 1 + x^2 + y^2 + z^2 \right) & \left( 1 + x^2 + y^2 + z^2 \right) \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]

\[\Rightarrow \bigtriangleup = \left( 1 + x^2 + y^2 + z^2 \right)\begin{vmatrix}1 & 1 & 1 \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]

Applying

\[C_2 \to C_2 - C_1\text { and } C_3 \to C_3 - C_1\] we get:

\[\bigtriangleup = \left( 1 + x^2 + y^2 + z^2 \right)\begin{vmatrix}1 & 0 & 0 \\ y^2 & 1 & 0 \\ z^2 & 0 & 1\end{vmatrix} = \left( 1 + x^2 + y^2 + z^2 \right) \times 1 = \left( 1 + x^2 + y^2 + z^2 \right)\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 3

संबंधित प्रश्न

 

Using properties of determinants, prove that 

`|[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]|=2|[a,b,c],[p,q,r],[x,y,z]|`

 

By using properties of determinants, show that:

`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`


By using properties of determinants, show that:

`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)


By using properties of determinants, show that:

`|(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)| = (x-y)(y-z)(z-x)(xy+yz+zx)`


By using properties of determinants, show that:

`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`


Evaluate `|(x, y, x+y),(y, x+y, x),(x+y, x, y)|`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that:

`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.


Without expanding the determinants, show that `|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Select the correct option from the given alternatives:

If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then


Answer the following question:

Without expanding determinant show that

`|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Answer the following question:

If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1


The determinant `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` equals ______.


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


If x = – 9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0, then other two roots are ______.


If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.


If a, b, c are the roots of the equation x3 - 3x2 + 3x + 7 = 0, then the value of `abs((2 "bc - a"^2, "c"^2, "b"^2),("c"^2, 2 "ac - b"^2, "a"^2),("b"^2, "a"^2, 2 "ab - c"^2))` is ____________.


Using properties of determinants `abs ((1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")) =` ____________.


Let P be any non-empty set containing p elements. Then, what is the number of relations on P?


A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:


Which of the following is correct?


In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.


If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that

`|(x+ y,y+z, z+x ),(z, x,y),(1,1,1)|` = 0 


Without expanding determinants find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Without expanding evaluate the following determinant:

`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×