Advertisements
Advertisements
Question
Using properties of determinants, prove the following:
Solution
Let \[\bigtriangleup = \begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix}\]
Multiplying R1, R2 and R3 by x, y and z, respectively, we get:
\[\bigtriangleup = \frac{1}{xyz}\begin{vmatrix}x\left( x^2 + 1 \right) & x^2 y & x^2 z \\ x y^2 & y\left( y^2 + 1 \right) & y^2 z \\ x z^2 & y z^2 & z\left( z^2 + 1 \right)\end{vmatrix}\]
Taking x, y and z common from the columns C1, C2 and C3, respectively, we get:
\[\bigtriangleup = \frac{xyz}{xyz}\begin{vmatrix}\left( x^2 + 1 \right) & x^2 & x^2 \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]
Applying R1 \[\to\] + R2 + R3, we get:
\[\bigtriangleup = \begin{vmatrix}\left( 1 + x^2 + y^2 + z^2 \right) & \left( 1 + x^2 + y^2 + z^2 \right) & \left( 1 + x^2 + y^2 + z^2 \right) \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]
\[\Rightarrow \bigtriangleup = \left( 1 + x^2 + y^2 + z^2 \right)\begin{vmatrix}1 & 1 & 1 \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]
Applying
\[C_2 \to C_2 - C_1\text { and } C_3 \to C_3 - C_1\] we get:
\[\bigtriangleup = \left( 1 + x^2 + y^2 + z^2 \right)\begin{vmatrix}1 & 0 & 0 \\ y^2 & 1 & 0 \\ z^2 & 0 & 1\end{vmatrix} = \left( 1 + x^2 + y^2 + z^2 \right) \times 1 = \left( 1 + x^2 + y^2 + z^2 \right)\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Using properties of determinants, show that ΔABC is isosceles if:`|[1,1,1],[1+cosA,1+cosB,1+cosC],[cos^2A+cosA,cos^B+cosB,cos^2C+cosC]|=0`
Without expanding the determinant, prove that
`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`
Using properties of determinants, prove that:
`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` = (β – γ) (γ – α) (α – β) (α + β + γ)
Using properties of determinants, prove that:
`|(1, 1+p, 1+p+q),(2, 3+2p, 4+3p+2q),(3,6+3p,10+6p+3q)| = 1`
Using properties of determinants show that
`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`
Using properties of determinants, prove the following :
Using properties of determinants, prove that
`|[b+c , a ,a ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc
Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants.
Without expanding determinants, prove that `|("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| = |("b"_1, "c"_1, "a"_1),("b"_2, "c"_2, "a"_2),("b"_3, "c"_3, "a"_3)| = |("c"_1, "a"_1, "b"_1),("c"_2, "a"_2, "b"_2),("c"_3, "a"_3, "b"_3)|`
By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.
Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`
Without expanding the determinants, show that `|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`
Answer the following question:
Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties
Answer the following question:
By using properties of determinant prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0
Answer the following question:
Without expanding determinant show that
`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0
Answer the following question:
If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1
The value of `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` is 8.
Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
The maximum value of Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` is ______. (θ is real number)
The determinant `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` is equal to zero.
The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.
A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:
Which of the following is correct?
In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.
The value of the determinant `|(6, 0, -1),(2, 1, 4),(1, 1, 3)|` is ______.
Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding evaluate the following determinant:
`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`
if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?