English

Using Properties of Determinants, Prove the Following : ∣ ∣ ∣ ∣ ∣ 1 a A 2 a 2 1 a A a 2 1 ∣ ∣ ∣ ∣ ∣ = ( 1 − a 3 ) 2 . - Mathematics

Advertisements
Advertisements

Question

Using properties of determinants, prove the following :

\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( 1 - a^3 \right)^2\].

Solution

Let \[∆ = \begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix}\]

Applying R1 → R1 + R2 + R3, we get

\[∆ = \begin{vmatrix}1 + a + a^2 & 1 + a + a^2 & 1 + a + a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix}\]

\[ = \left( 1 + a + a^2 \right) \begin{vmatrix}1 & 1 & 1 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix}\]

Applying C2 → C2 − C1 and C3 → C3 − C1, we get

\[∆ = \left( 1 + a + a^2 \right) \begin{vmatrix}1 & 0 & 0 \\ a^2 & 1 - a^2 & a - a^2 \\ a & a^2 - a & 1 - a\end{vmatrix}\]

\[ = \left( 1 + a + a^2 \right) \left( 1 - a \right) \left( 1 - a \right) \begin{vmatrix}1 & 0 & 0 \\ a^2 & 1 + a & a \\ a & - a & 1\end{vmatrix}\]

\[ = \left( 1 - a^3 \right) \left( 1 - a \right) \begin{vmatrix}1 & 0 & 0 \\ a^2 & 1 + a & a \\ a & - a & 1\end{vmatrix}\]

Expanding along R1, we get
∆ = (1 − a3) (1 − a) {[(1 + a) + a2] − 0 + 0}
   = (1 − a3) (1 − a) (1 + a2)
   = (1 − a3) (1 − a3)
   = (1 − a3)2

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 2

RELATED QUESTIONS

Using properties of determinants, show that ΔABC is isosceles if:`|[1,1,1],[1+cosA,1+cosB,1+cosC],[cos^2A+cosA,cos^B+cosB,cos^2C+cosC]|=0​`


Using the property of determinants and without expanding, prove that:

`|(2,7,65),(3,8,75),(5,9,86)| = 0`


By using properties of determinants, show that:

`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`


By using properties of determinants, show that:

`|(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)| = (x-y)(y-z)(z-x)(xy+yz+zx)`


Using properties of determinants, prove that 

`|(a^2 + 2a,2a + 1,1),(2a+1,a+2, 1),(3, 3, 1)| = (a - 1)^3`


Using properties of determinants show that

`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`


Using properties of determinants, prove that: 

`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`


Using properties of determinants, find the value of x for which
`|(4-"x",4+"x",4+"x"),(4+"x",4-"x",4+"x"),(4+"x",4+"x",4-"x")|= 0`


Evaluate the following determinants:

`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`


If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.


Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0


Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Without expanding evaluate the following determinant:

`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`


Select the correct option from the given alternatives:

The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when


Select the correct option from the given alternatives:

If x = –9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 has other two roots are


Answer the following question:

Without expanding determinant show that

`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


The value of `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` is 8.


Evaluate: `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


Prove that: `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`


If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.


If cos2θ = 0, then `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.


If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


`abs(("x", -7),("x", 5"x" + 1))`


Let P be any non-empty set containing p elements. Then, what is the number of relations on P?


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding the determinant, find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


if `|(a, b, c),(m, n, p),(x, y, z)| = k`, then what is the value of `|(6a, 2b, 2c),(3m, n, p),(3x, y, z)|`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×