English

Without expanding evaluate the following determinant: |276538755986| - Mathematics and Statistics

Advertisements
Advertisements

Question

Without expanding evaluate the following determinant:

`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`

Sum

Solution

Let D = `|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`

By C3 – 9C2, we get,

D = `|(2, 7, 2),(3, 8, 3),(5, 9, 5)|`

= 0.     ...[∵ C1 ≡ C3]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.2 [Page 67]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Determinants and Matrices
Exercise 4.2 | Q 1. (iii) | Page 67

RELATED QUESTIONS

Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`


Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`


Using the properties of determinants, prove the following:

`|[1,x,x+1],[2x,x(x-1),x(x+1)],[3x(1-x),x(x-1)(x-2),x(x+1)(x-1)]|=6x^2(1-x^2)`


 

If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).

 

Using properties of determinants, prove that

`|[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3`


Using the property of determinants and without expanding, prove that:

`|(1, bc, a(b+c)),(1, ca, b(c+a)),(1, ab, c(a+b))| = 0`


By using properties of determinants, show that:

`|(x+y+2z, x, y),(z, y+z+2z,y),(z,x,z+x+2y)| = 2(x+y+z)^3`


By using properties of determinants, show that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1+a^2+b^2)`


By using properties of determinants, show that:

`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`


Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that 

`|(a^2 + 2a,2a + 1,1),(2a+1,a+2, 1),(3, 3, 1)| = (a - 1)^3`


Using properties of determinants, prove that:

`|(1+a^2-b^2, 2ab, -2b),(2ab, 1-a^2+b^2, 2a),(2b, -2a, 1-a^2-b^2)| = (1 + a^2 + b^2)^3`


Using properties of determinants, prove the following:

`|(a, b,c),(a-b, b-c, c-a),(b+c, c+a, a+b)| = a^3 + b^3 + c^3 - 3abc`.


By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.


Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


If  `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.


Select the correct option from the given alternatives:

The determinant D = `|("a", "b", "a" + "b"),("b", "c", "b" + "c"),("a" + "b", "b" + "c", 0)|` = 0 if


If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then


Select the correct option from the given alternatives:

Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then


Select the correct option from the given alternatives:

If x = –9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 has other two roots are


Select the correct option from the given alternatives:

If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties


Answer the following question:

Without expanding determinant show that

`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


Prove that: `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


The value of determinant `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` is ______.


The number of distinct real roots of `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 in the interval `pi/4  x ≤ pi/4` is ______.


The value of the determinant `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` is ______.


If cos2θ = 0, then `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.


If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


Which of the following is correct?


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding evaluate the following determinant.

`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×