Advertisements
Advertisements
Question
Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`
Solution
We need to prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`
`|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|`
On applying R1→R1+R2+R3, we get
`=|[x+y+z,x+y+z,x+y+z],[2z,2z,z-x-y],[x-y-z,2x,2x]|`
Taking x+y+z common from the first row, we get
`=(x+y+z)|[1,1,1],[2z,2z,z-x-y],[x-y-z,2x,2x]|`
Now, applying C2→C2−C1 and C3→C3−C1 , we get:
`=(x+y+z)|[1,0,0],[2z,0, (z-x-y)-(2z)],[x-y-z, 2x-(x-y-z), 2x-(x-y-z)]|`
`= (xy+z) = |(1,0,0),(2z,0,-(z+x+y)),(x-y-z,(x+y+z) , x+y+z)|`
`= (x+y+z)^3 |(1,0,0),(2z,0,-1),(x-y-z , 1 , 1)|`
`= (x+y+z)^3 [1|(0,-1),(1,1)| - 0 |+0|]`
`= (x+y+z)^3 [|(0,-1),(1,1)|]`
`= (x+y+z)^3` = RHS
APPEARS IN
RELATED QUESTIONS
By using properties of determinants, show that:
`|(1,x,x^2),(x^2,1,x),(x,x^2,1)| = (1-x^3)^2`
Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`
Using properties of determinants show that
`[[1,1,1+x],[1,1+y,1],[1+z,1,1]] = xyz+ yz +zx+xy.`
Using properties of determinants, prove the following:
Using properties of determinant prove that
`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc
Using properties of determinants, find the value of x for which
`|(4-"x",4+"x",4+"x"),(4+"x",4-"x",4+"x"),(4+"x",4+"x",4-"x")|= 0`
Without expanding evaluate the following determinant:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Solve the following equation:
`|(x + 2, x + 6, x - 1),(x + 6, x - 1, x + 2),(x - 1, x + 2, x + 6)|` = 0
Select the correct option from the given alternatives:
Let D = `|(sintheta*cosphi, sintheta*sinphi, costheta),(costheta*cosphi, costheta*sinphi, -sintheta),(-sintheta*sinphi, sintheta*cosphi, 0)|` then
Select the correct option from the given alternatives:
`|("b" + "c", "c" + "a", "a" + "b"),("q" + "r", "r" + "p", "p" + "q"),(y + z, z + x, x + y)|` =
Answer the following question:
By using properties of determinant prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0
Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`
Evaluate: `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
Prove that: `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0
If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.
The determinant `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` equals ______.
If cos2θ = 0, then `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.
Let P be any non-empty set containing p elements. Then, what is the number of relations on P?
A system of linear equations represented in matrix form Ax = 0, A is n × n matrix, has a non-zero solution if the determinant of A (i.e., det(A)) is
Let a, b, c be such that b(a + c) ≠ 0 if
`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.
If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0
Without expanding evaluate the following determinant:
`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`
By using properties of determinant prove that
`|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0
Without expanding evaluate the following determinant.
`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`
Without expanding evaluate the following determinant.
`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`
The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?