English

If [4-x4+x4+x4+x4-x4+x4+x4+x4-x] = 0, then find values of x - Mathematics

Advertisements
Advertisements

Question

If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.

Sum

Solution

We have, `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0

[Applying R1 → R1 + R2 + R3]

⇒ `|(12 + x, 12 + x, 12 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0

[Taking (12 + x) common from R1]

⇒ `(12 + x)|(1, 1, 1),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0

[Applying C1 → C1 – C2 and C2 → C2 – C3]

⇒ `(12 + x)|(0, 0, 1),(0, -2x, 4 + x),(2x, 2x, 4 - x)|` = 0

⇒ `(12 + x)(0 - (-2x)(2x)]` = 0

⇒ `(12 + x)(4x^2)` = 0

∴ x = –12, 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 78]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 13 | Page 78

RELATED QUESTIONS

Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`


By using properties of determinants, show that:

`|(1,a,a^2),(1,b,b^2),(1,c,c^2)| = (a - b)(b-c)(c-a)`


By using properties of determinants, show that:

`|(1,1,1),(a,b,c),(a^3, b^3,c^3)|` = (a-b)(b-c)(c-a)(a+b+c)


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that:

`|(1, 1+p, 1+p+q),(2, 3+2p, 4+3p+2q),(3,6+3p,10+6p+3q)| =  1`                 


Using properties of determinants, prove the following:

\[\begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix} = 1 + x^2 + y^2 + z^2\] .

Using properties of determinants, prove that

`|[b+c , a ,a  ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc 


Using properties of determinant prove that 

`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc


Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants. 


Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


Solve the following equation: 

`|(x + 2, x + 6, x - 1),(x + 6, x - 1, x + 2),(x - 1, x + 2, x + 6)|` = 0


Without expanding determinants show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Select the correct option from the given alternatives:

The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Without expanding determinant show that

`|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Evaluate: `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`


The value of determinant `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` is ______.


If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to ______.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.


Without expanding determinants find the value of  `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×